If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+42m+36=0
a = 6; b = 42; c = +36;
Δ = b2-4ac
Δ = 422-4·6·36
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-30}{2*6}=\frac{-72}{12} =-6 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+30}{2*6}=\frac{-12}{12} =-1 $
| -3(1-x)=2(x+1 | | -6x^2-36x+10=0 | | n*(n^2+1)=72 | | -6x^2-36+10=0 | | 5x+19x-8=6(4x+10) | | -2x+16=3x+11 | | 4x+12x-3=4(4x+5) | | 60•10=3x•2x | | 3(5-5x)+8(-x-1)=40 | | 3x^2-48x+120=0 | | b+(-20)=-14 | | 8^(x+1)=216,4^x= | | (4x+54)+(3x+77)=180 | | 8n-(5n+4)=4 | | 4t^2-14t=0 | | 6600=120x+100x | | 6n−5n=3 | | 3x+19=6x+13 | | (7/2u+4)+1=-(4/u+2) | | (7/2u+4)+1=(4/u+2) | | 6=1/3x+ | | -5x+15=-3x+3 | | 2x-3=-2x-31 | | 7x+18°=2x | | -2x-16=-8 | | (4x+15)=(13x+7) | | -3x+11=-5x-1 | | 11x-2=6x+3 | | -3x-9=-4x-4 | | 5.12=y/12 | | -7x-11=-5x-9 | | m-12÷m+5-m/2=2m |